Defense is the unsolvable puzzle in NBA analytics. No matter how advanced the advanced stats get, defensive metrics continue to crash against the same conundrums. Better data often leads to better models, and recent years have seen a dramatic improvement in the quality of defensive data available for analysis. Tracking data, opponent shooting data, play-by-play data, and more have all played a hand in modern defensive analysis. In spite of the improvements, or perhaps in part because of the improvements, it is clear that defensive analysis is still not highly accurate.
Most defensive metrics which are currently extant are based on one of two schools of thought. In order to take stock of why defensive analysis is still frequently inaccurate, it will help to investigate the underlying assumptions behind most current models.
The
Plus/Minus School of Thought
The most popular method by far is The Plus/Minus School, which counts BPM, RPM, RAPM, PIPM, and more among its adherents. The distinguishing precept of the Plus/Minus School is the belief that we can ascertain a player’s defensive value by evaluating the team’s performance with him on the court, if only we properly adjust for strength of opponent, the team’s talent level, the team’s performance with the player off the court, and the player’s performance level in seasons past. The adjustments made to raw plus/minus are attempts to extract reliable data by excising confounding variables.
Continue reading “Matchup-Based Defense” →